Note the T-shape tree is determined by its Laplacian spectrum

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lollipop Graph is Determined by its Spectrum

An even (resp. odd) lollipop is the coalescence of a cycle of even (resp. odd) length and a path with pendant vertex as distinguished vertex. It is known that the odd lollipop is determined by its spectrum and the question is asked by W. Haemers, X. Liu and Y. Zhang for the even lollipop. We revisit the proof for odd lollipop, generalize it for even lollipop and therefore answer the question. O...

متن کامل

A class of unicyclic graphs determined by their Laplacian spectrum

Let Gr,p be a graph obtained from a path by adjoining a cycle Cr of length r to one end and the central vertex of a star Sp on p vertices to the other end. In this paper, it is proven that unicyclic graph Gr,p with r even is determined by its Laplacian spectrum except for n = p+4.

متن کامل

Microtubule organization is determined by the shape of epithelial cells

Interphase microtubule organization is critical for cell function and tissue architecture. In general, physical mechanisms are sufficient to drive microtubule organization in single cells, whereas cells within tissues are thought to utilize signalling mechanisms. By improving the imaging and quantitation of microtubule alignment within developing Drosophila embryos, here we demonstrate that mic...

متن کامل

Erratum to "The lollipop graph is determined by its Q-spectrum"

A graph G is said to be determined by its Q-spectrum if with respect to the signless Laplacian matrix Q , any graph having the same spectrum as G is isomorphic to G. The lollipop graph, denoted by Hn,p, is obtained by appending a cycle Cp to a pendant vertex of a path Pn−p. In this paper, it is proved that all lollipop graphs are determined by their Q -spectra. © 2008 Elsevier B.V. All rights r...

متن کامل

Graphs determined by their (signless) Laplacian spectra

Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2006

ISSN: 0024-3795

DOI: 10.1016/j.laa.2006.04.005